Temperature-dependency analysis and correction methods of in situ power-loss estimation for crystalline silicon modules undergoing potential-induced degradation stress testing
نویسندگان
چکیده
We propose a method for in situ characterization of the photovoltaic module power at standard test conditions, using superposition of the dark current–voltage (I–V) curve measured at the elevated stress temperature, during potential-induced degradation (PID) testing. PID chamber studies were performed on several crystalline silicon module designs to determine the extent to which the temperature dependency of maximum power is affected by the degradation of the modules. The results using the superposition principle show a mismatch between the power degradation measured at stress temperature and the degradation measured at 25 °C, dependent on module design, stress temperature, and level of degradation. We investigate the correction of this mismatch using two maximum-power temperature translation methods found in the literature. For the first method, which is based on the maximum-power temperature coefficient, we find that the temperature coefficient changes as the module degrades by PID, thus limiting its applicability. The second method investigated is founded on the two-diode model, which allows for fundamental analysis of the degradation, but does not lend itself to large-scale data collection and analysis. Last, we propose and validate experimentally a simpler and more accurate maximum-power temperature translation method, by taking advantage of the near-linear relationship between the mismatch and power degradation. This method reduces test duration and cost, avoids stress transients while ramping to and from the stress temperature, eliminates flash testing except at the initial and final data points, and enables significantly faster and more detailed acquisition of statistical data for future application of various statistical reliability models. Copyright © 2015 John Wiley & Sons, Ltd.
منابع مشابه
In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint
We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity-freeze stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. We analyze dark I-V curves measured on modules undergoing degradation in three steps; first for shunting and recombination losses; seco...
متن کاملCharacterization of Degradation under Standard Environmental Testing Methods for Crystalline Silicon Photovoltaic Modules
Standard environmental tests have been developed for photovoltaic (PV) modules to assess the reliability of their performance in a short period of time. These tests generate different modes of degradation by combination of environmental stresses. There is a need to differentiate between the standard tests on the basis of severity. This helps to understand the individual and combined degradation...
متن کاملDegradation of Photovoltaic Modules Under High Voltage Stress in the Field: Preprint
The degradation in performance for eight photovoltaic (PV) modules stressed at high voltage (HV) is presented. Four types of modules— tandem-junction and triple-junction amorphous thin-film silicon, plus crystalline and polycrystalline silicon modules—were tested, with a pair of each biased at opposite polarities. They were deployed outdoors between 2001 and 2009 with their respective HV leakag...
متن کاملComparison of Reliability Tests by Characterization of Degradation in Photovoltaic Modules
The recent large scale deployment of multi crystalline silicon photovoltaic (PV) modules in the field has risen the need for indepth studies of degradation in a fast and efficient manner. In this context, different standard test procedures as specified under IEC 61215 viz. thermal cycling (TC), humidity freeze (HF) and damp heat (DH) have been developed for crystalline silicon PV modules [1]. T...
متن کاملAnalysis of Temperature Effect on a Crystalline Silicon Photovoltaic Module Performance
In this paper, the effect of the cell-temperature on the performance of photovoltaic (PV) module is evaluated. The evaluation is based on a mathematical module (single diode equivalent circuit) and practically based on solar module tester (SMT). Solara®130W PV crystalline silicon module was used in this simulation. The SMT is able to supply a constant irradiance level (1000W/m2) or any other de...
متن کامل